Search results
Results from the WOW.Com Content Network
Here is a similar formula from the 67th edition of the CRC handbook. Note that the form of this formula as given is a fit to the Clausius–Clapeyron equation, which is a good theoretical starting point for calculating saturation vapor pressures: log 10 (P) = −(0.05223)a/T + b, where P is in mmHg, T is in kelvins, a = 38324, and b = 8.8017.
Since API gravity is an inverse measure of a liquid's density relative to that of water, it can be calculated by first dividing the liquid's density by the density of water at a base temperature (usually 60 °F) to compute Specific Gravity (SG), then converting the Specific Gravity to Degrees API as follows: = =
Liquid water has a density of approximately 1 g/cm 3 (1 g/mL). Thus 100 mL of water is equal to approximately 100 g. Thus 100 mL of water is equal to approximately 100 g. Therefore, a solution with 1 g of solute dissolved in final volume of 100 mL aqueous solution may also be considered 1% m/m (1 g solute in 99 g water).
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
For a substance X with a specific volume of 0.657 cm 3 /g and a substance Y with a specific volume 0.374 cm 3 /g, the density of each substance can be found by taking the inverse of the specific volume; therefore, substance X has a density of 1.522 g/cm 3 and substance Y has a density of 2.673 g/cm 3. With this information, the specific ...
ρ new is the unknown density of the new (green) liquid. RD new/ref is the relative density of the new liquid with respect to the reference. V is the volume of reference liquid displaced, i.e. the red volume in the diagram. m is the mass of the entire hydrometer. g is the local gravitational constant. Δx is the change in displacement.
Densities using the following metric units all have exactly the same numerical value, one thousandth of the value in (kg/m 3). Liquid water has a density of about 1 kg/dm 3, making any of these SI units numerically convenient to use as most solids and liquids have densities between 0.1 and 20 kg/dm 3. kilogram per cubic decimetre (kg/dm 3)
A solution with 1 g of solute dissolved in a final volume of 100 mL of solution would be labeled as "1%" or "1% m/v" (mass/volume). This is incorrect because the unit "%" can only be used for dimensionless quantities. Instead, the concentration should simply be given in units of g/mL.