Search results
Results from the WOW.Com Content Network
In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...
The standard playing card ranks {A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2} form a 13-element set. The card suits {♠, ♥, ♦, ♣} form a four-element set. The Cartesian product of these sets returns a 52-element set consisting of 52 ordered pairs, which correspond to all 52 possible playing cards.
In category theory, the product of two (or more) objects in a category is a notion designed to capture the essence behind constructions in other areas of mathematics such as the Cartesian product of sets, the direct product of groups or rings, and the product of topological spaces.
The lexicographic combination of two total orders is a linear extension of their product order, and thus the product order is a subrelation of the lexicographic order. [3] The Cartesian product with the product order is the categorical product in the category of partially ordered sets with monotone functions. [7]
If G is a group, then the category of all G-sets is Cartesian closed. If Y and Z are two G-sets, then Z Y is the set of all functions from Y to Z with G action defined by (g.F)(y) = g.F(g −1.y) for all g in G, F:Y → Z and y in Y. The subcategory of finite G-sets is also Cartesian closed.
Ternary relations may also be referred to as 3-adic, 3-ary, 3-dimensional, or 3-place. Just as a binary relation is formally defined as a set of pairs , i.e. a subset of the Cartesian product A × B of some sets A and B , so a ternary relation is a set of triples, forming a subset of the Cartesian product A × B × C of three sets A , B and C .
Total orders are sometimes also called simple, [2] connex, [3] or full orders. [4] A set equipped with a total order is a totally ordered set; [5] the terms simply ordered set, [2] linearly ordered set, [3] [5] toset [6] and loset [7] [8] are also used. The term chain is sometimes defined as a synonym of totally ordered set, [5] but generally ...
8.3.1 Counter-examples: ... is called a left identity element of a binary operator ... and binary Cartesian product ...