enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Scott's rule - Wikipedia

    en.wikipedia.org/wiki/Scott's_Rule

    Scott's rule is a method to select the number of bins in a histogram. [1] Scott's rule is widely employed in data analysis software including R, [2] Python [3] and Microsoft Excel where it is the default bin selection method. [4]

  3. Histogram - Wikipedia

    en.wikipedia.org/wiki/Histogram

    A histogram is a visual representation of the distribution of quantitative data. To construct a histogram, the first step is to "bin" (or "bucket") the range of values— divide the entire range of values into a series of intervals—and then count how many values fall into each interval.

  4. Data and information visualization - Wikipedia

    en.wikipedia.org/wiki/Data_and_information...

    To start thinking visually, users must consider two questions; 1) What you have and 2) what you're doing. The first step is identifying what data you want visualised. It is data-driven like profit over the past ten years or a conceptual idea like how a specific organisation is structured.

  5. Sturges's rule - Wikipedia

    en.wikipedia.org/wiki/Sturges's_rule

    Sturges's rule [1] is a method to choose the number of bins for a histogram.Given observations, Sturges's rule suggests using ^ = + ⁡ bins in the histogram. This rule is widely employed in data analysis software including Python [2] and R, where it is the default bin selection method.

  6. Plotting algorithms for the Mandelbrot set - Wikipedia

    en.wikipedia.org/wiki/Plotting_algorithms_for...

    The top row is a series of plots using the escape time algorithm for 10000, 1000 and 100 maximum iterations per pixel respectively. The bottom row uses the same maximum iteration values but utilizes the histogram coloring method. Notice how little the coloring changes per different maximum iteration counts for the histogram coloring method plots.

  7. V-optimal histograms - Wikipedia

    en.wikipedia.org/wiki/V-optimal_histograms

    A v-optimal histogram is based on the concept of minimizing a quantity which is called the weighted variance in this context. [1] This is defined as = =, where the histogram consists of J bins or buckets, n j is the number of items contained in the jth bin and where V j is the variance between the values associated with the items in the jth bin.

  8. Comparison of statistical packages - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_statistical...

    5 Time series analysis. 6 Charts and diagrams. 7 Other abilities. 8 See also. 9 Footnotes. ... Histogram Line chart Scatterplot Violin plot; ADaMSoft: Yes Yes Yes Yes ...

  9. Precedence diagram method - Wikipedia

    en.wikipedia.org/wiki/Precedence_Diagram_Method

    The difference between the earliest and the latest start time. [1]: 502 [2]: 183 i.e. Slack = latest start date - earliest start day or Slack = latest finish time - earliest finish time. Any activities which have a slack of 0, they are on the critical path. solving the PDM, with: BS is an early start date. BM is a late start date.