enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Initial condition - Wikipedia

    en.wikipedia.org/wiki/Initial_condition

    A linear matrix difference equation of the homogeneous (having no constant term) form + = has closed form solution = predicated on the vector of initial conditions on the individual variables that are stacked into the vector; is called the vector of initial conditions or simply the initial condition, and contains nk pieces of information, n being the dimension of the vector X and k = 1 being ...

  3. Initial value problem - Wikipedia

    en.wikipedia.org/wiki/Initial_value_problem

    An initial value problem is a differential equation ′ = (, ()) with : where is an open set of , together with a point in the domain of (,),called the initial condition.. A solution to an initial value problem is a function that is a solution to the differential equation and satisfies

  4. Chaos theory - Wikipedia

    en.wikipedia.org/wiki/Chaos_theory

    This is an example of sensitive dependence on initial conditions. Sensitivity to initial conditions means that each point in a chaotic system is arbitrarily closely approximated by other points that have significantly different future paths or trajectories. Thus, an arbitrarily small change or perturbation of the current trajectory may lead to ...

  5. Butterfly effect - Wikipedia

    en.wikipedia.org/wiki/Butterfly_effect

    A plot of Lorenz' strange attractor for values ρ=28, σ = 10, β = 8/3. The butterfly effect or sensitive dependence on initial conditions is the property of a dynamical system that, starting from any of various arbitrarily close alternative initial conditions on the attractor, the iterated points will become arbitrarily spread out from each other.

  6. Free field - Wikipedia

    en.wikipedia.org/wiki/Free_field

    Such linear PDE's have a unique solution for a given initial condition. In quantum field theory , an operator valued distribution is a free field if it satisfies some linear partial differential equations such that the corresponding case of the same linear PDEs for a classical field (i.e. not an operator) would be the Euler–Lagrange equation ...

  7. Dynamical system - Wikipedia

    en.wikipedia.org/wiki/Dynamical_system

    In a Hamiltonian system, not all possible configurations of position and momentum can be reached from an initial condition. Because of energy conservation, only the states with the same energy as the initial condition are accessible. The states with the same energy form an energy shell Ω, a sub-manifold of the phase space.

  8. Lorenz system - Wikipedia

    en.wikipedia.org/wiki/Lorenz_system

    A sample solution in the Lorenz attractor when ρ = 28, σ = 10, and β = ⁠ 8 / 3 ⁠ The Lorenz system is a system of ordinary differential equations first studied by mathematician and meteorologist Edward Lorenz. It is notable for having chaotic solutions for certain parameter values and initial conditions.

  9. Hamilton's principle - Wikipedia

    en.wikipedia.org/wiki/Hamilton's_principle

    In physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action.It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the Lagrangian, which may contain all physical information concerning the system and the forces acting on it.