Search results
Results from the WOW.Com Content Network
Polygon triangulation. In computational geometry, polygon triangulation is the partition of a polygonal area (simple polygon) P into a set of triangles, [1] i.e., finding a set of triangles with pairwise non-intersecting interiors whose union is P. Triangulations may be viewed as special cases of planar straight-line graphs.
Cell is the intersection of all of these half-spaces, and hence it is a convex polygon. [6] When two cells in the Voronoi diagram share a boundary, it is a line segment , ray , or line, consisting of all the points in the plane that are equidistant to their two nearest sites.
The following pseudocode describes a basic implementation of the Bowyer-Watson algorithm. Its time complexity is ().Efficiency can be improved in a number of ways. For example, the triangle connectivity can be used to locate the triangles which contain the new point in their circumcircle, without having to check all of the triangles - by doing so we can decrease time complexity to ().
Cell-based models are mathematical models that represent biological cells as discrete entities. Within the field of computational biology they are often simply called agent-based models [1] of which they are a specific application and they are used for simulating the biomechanics of multicellular structures such as tissues. to study the influence of these behaviors on how tissues are organised ...
Other methods also exist for describing polygonal tilings. When the tessellation is made of regular polygons, the most common notation is the vertex configuration, which is simply a list of the number of sides of the polygons around a vertex. The square tiling has a vertex configuration of 4.4.4.4, or 4 4.
Polygon triangulations may be found in linear time and form the basis of several important geometric algorithms, including a simple approximate solution to the art gallery problem. The constrained Delaunay triangulation is an adaptation of the Delaunay triangulation from point sets to polygons or, more generally, to planar straight-line graphs.
Archived from the original on July 4, 2008. Reprinted by Dover (1999), ISBN 978-0-486-40921-4. Popko, Edward S. (2012). "Chapter 8. Subdivision schemas, 8.1 Geodesic Notation, 8.2 Triangulation number 8.3 Frequency and Harmonics 8.4 Grid Symmetry 8.5 Class I: Alternates and fords 8.5.1 Defining the Principal triangle 8.5.2 Edge Reference Points".
A polygonal mesh may also be more generally composed of concave polygons, or even polygons with holes. The study of polygon meshes is a large sub-field of computer graphics (specifically 3D computer graphics) and geometric modeling. Different representations of polygon meshes are used for different applications and goals.