Search results
Results from the WOW.Com Content Network
Polygon triangulation. In computational geometry, polygon triangulation is the partition of a polygonal area (simple polygon) P into a set of triangles, [1] i.e., finding a set of triangles with pairwise non-intersecting interiors whose union is P. Triangulations may be viewed as special cases of planar straight-line graphs.
Cell is the intersection of all of these half-spaces, and hence it is a convex polygon. [6] When two cells in the Voronoi diagram share a boundary, it is a line segment , ray , or line, consisting of all the points in the plane that are equidistant to their two nearest sites.
The following pseudocode describes a basic implementation of the Bowyer-Watson algorithm. Its time complexity is ().Efficiency can be improved in a number of ways. For example, the triangle connectivity can be used to locate the triangles which contain the new point in their circumcircle, without having to check all of the triangles - by doing so we can decrease time complexity to ().
An ear of a polygon is defined as a triangle formed by three consecutive vertices ,, of the polygon, such that its edge lies entirely in the interior of the polygon. The two ears theorem states that every simple polygon that is not itself a triangle has at least two ears.
In geometry, a polygon with holes is an area-connected planar polygon with one external boundary and one or more interior boundaries (holes). [1] Polygons with holes can be dissected into multiple polygons by adding new edges, so they are not frequently needed. An ordinary polygon can be called simply-connected, while a polygon-with-holes is ...
Polygon triangulations may be found in linear time and form the basis of several important geometric algorithms, including a simple approximate solution to the art gallery problem. The constrained Delaunay triangulation is an adaptation of the Delaunay triangulation from point sets to polygons or, more generally, to planar straight-line graphs.
Cell-based models are mathematical models that represent biological cells as discrete entities. Within the field of computational biology they are often simply called agent-based models [1] of which they are a specific application and they are used for simulating the biomechanics of multicellular structures such as tissues. to study the influence of these behaviors on how tissues are organised ...
Only 4 of those 15 chords occur in the 16-cell, 8-cell and 24-cell. The four hypercubic chords √ 1, √ 2, √ 3 and √ 4 are sufficient to build the 24-cell and all its component parts. The 24-cell is the unique solution to the combination of these 4 chords and all the regular polytopes that can be built from them.