Search results
Results from the WOW.Com Content Network
Sclerenchyma is the tissue which makes the plant hard and stiff. Sclerenchyma is the supporting tissue in plants. Two types of sclerenchyma cells exist: fibers cellular and sclereids. Their cell walls consist of cellulose, hemicellulose, and lignin. Sclerenchyma cells are the principal supporting cells in plant tissues that have ceased elongation.
The epidermis is the outermost cell layer of the primary plant body. In some older works the cells of the leaf epidermis have been regarded as specialized parenchyma cells, [1] but the established modern preference has long been to classify the epidermis as dermal tissue, [2] whereas parenchyma is classified as ground tissue. [3]
Phloem (/ ˈ f l oʊ. əm /, FLOH-əm) is the living tissue in vascular plants that transports the soluble organic compounds made during photosynthesis and known as photosynthates, in particular the sugar sucrose, [1] to the rest of the plant.
The discovery of the Casparian strip dates back to the mid-19th century, and advances in the understanding of the endodermis of plant roots. [15] In 1865, the German botanist Robert Caspary first described the endodermis of the root of plants, found that its cell wall was thickened, and named it Schuchtzscheide.
When scientists use a traditional microscope to observe a cell, they use stains -- chemicals that color parts of the cell to make them visible. However, these stains cause damage and kill the cell ...
In biology, tissue is an assembly of similar cells and their extracellular matrix from the same embryonic origin that together carry out a specific function. [1] [2] Tissues occupy a biological organizational level between cells and a complete organ.
Compound microscopes first appeared in Europe around 1620. [2] [3] The actual inventor of the compound microscope is unknown although many claims have been made over the years. These include a dubious claim that Dutch spectacle-maker Zacharias Janssen invented the compound microscope and the telescope as early as 1590.
Biological systems exist as a complex interplay of countless cellular components interacting across four dimensions to produce the phenomenon called life. While it is common to reduce living organisms to non-living samples to accommodate traditional static imaging tools, the further the sample deviates from the native conditions, the more likely the delicate processes in question will exhibit ...