Search results
Results from the WOW.Com Content Network
A two-dimensional representation of the Klein bottle immersed in three-dimensional space. In mathematics, the Klein bottle (/ ˈ k l aɪ n /) is an example of a non-orientable surface; that is, informally, a one-sided surface which, if traveled upon, could be followed back to the point of origin while flipping the traveler upside down.
In mathematics, a solid Klein bottle is a three-dimensional topological space (a 3-manifold) whose boundary is the Klein bottle. [ 1 ] It is homeomorphic to the quotient space obtained by gluing the top disk of a cylinder D 2 × I {\displaystyle \scriptstyle D^{2}\times I} to the bottom disk by a reflection across a diameter of the disk.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
English: Save this script (slightly modified from - see for the page containing this model) to file "bottle" then run the command line "gnuplot bottle", you will get "bottle.svg", if you have well installed gnuplot 4.0 or later.
In the Klein bottle diagram, a goes round one way and −a goes round the opposite way. If a is thought of as a cut, then −a can be thought of as a gluing operation. Making a cut and then re-gluing it does not change the surface, so a + (−a) = 0. But now consider two a-cycles.
One of a series of diagrams illustrating the folding of a rectangle into a Klein Bottle: Date: 16 February 2007: Source: Own work (Own drawing)
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
For example, the Klein bottle is a surface that cannot be embedded in three-dimensional Euclidean space. Topological surfaces are sometimes equipped with additional information, such as a Riemannian metric or a complex structure, that connects them to other disciplines within mathematics, such as differential geometry and complex analysis.