enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bohr radius - Wikipedia

    en.wikipedia.org/wiki/Bohr_radius

    In the simplest atom, hydrogen, a single electron orbits the nucleus, and its smallest possible orbit, with the lowest energy, has an orbital radius almost equal to the Bohr radius. (It is not exactly the Bohr radius due to the reduced mass effect. They differ by about 0.05%.) The Bohr model of the atom was superseded by an electron probability ...

  3. Atomic radii of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Atomic_radii_of_the...

    The Bohr radius is consequently known as the "atomic unit of length". It is often denoted by a 0 and is approximately 53 pm. Hence, the values of atomic radii given here in picometers can be converted to atomic units by dividing by 53, to the level of accuracy of the data given in this table.

  4. Atomic radius - Wikipedia

    en.wikipedia.org/wiki/Atomic_radius

    A graph comparing the atomic radius of elements with atomic numbers 1–100. Accuracy of ±5 pm. Electrons in atoms fill electron shells from the lowest available energy level. As a consequence of the Aufbau principle, each new period begins with the first two elements filling the next unoccupied s-orbital. Because an atom's s-orbital electrons ...

  5. Atomic units - Wikipedia

    en.wikipedia.org/wiki/Atomic_units

    Atomic units are chosen to reflect the properties of electrons in atoms, which is particularly clear in the classical Bohr model of the hydrogen atom for the bound electron in its ground state: Mass = 1 a.u. of mass; Charge = −1 a.u. of charge; Orbital radius = 1 a.u. of length; Orbital velocity = 1 a.u. of velocity [44]: 597

  6. Classical electron radius - Wikipedia

    en.wikipedia.org/wiki/Classical_electron_radius

    The classical electron radius is sometimes known as the Lorentz radius or the Thomson scattering length. It is one of a trio of related scales of length, the other two being the Bohr radius a 0 {\displaystyle a_{0}} and the reduced Compton wavelength of the electron ƛ e .

  7. Electron shell - Wikipedia

    en.wikipedia.org/wiki/Electron_shell

    In 1913, Niels Bohr proposed a model of the atom, giving the arrangement of electrons in their sequential orbits. At that time, Bohr allowed the capacity of the inner orbit of the atom to increase to eight electrons as the atoms got larger, and "in the scheme given below the number of electrons in this [outer] ring is arbitrary put equal to the normal valency of the corresponding element".

  8. Muonium - Wikipedia

    en.wikipedia.org/wiki/Muonium

    Muonium (/ m juː ˈ oʊ n i ə m /) is an exotic atom made up of an antimuon and an electron, [1] which was discovered in 1960 by Vernon W. Hughes [2] and is given the chemical symbol Mu. During the muon's 2.2 µs lifetime, muonium can undergo chemical reactions.

  9. Bohr model - Wikipedia

    en.wikipedia.org/wiki/Bohr_model

    The Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1), where the negatively charged electron confined to an atomic shell encircles a small, positively charged atomic nucleus and where an electron jumps between orbits, is accompanied by an emitted or absorbed amount of electromagnetic energy (hν). [1]