Search results
Results from the WOW.Com Content Network
The rearrangement inequality can be regarded as intuitive in the following way. Imagine there is a heap of $10 bills, a heap of $20 bills and one more heap of $100 bills.
Some solutions of a differential equation having a regular singular point with indicial roots = and .. In mathematics, the method of Frobenius, named after Ferdinand Georg Frobenius, is a way to find an infinite series solution for a linear second-order ordinary differential equation of the form ″ + ′ + = with ′ and ″.
The inequality was first proved by Frigyes Riesz in 1930, [1] and independently reproved by S.L.Sobolev in 1938. Brascamp, Lieb and Luttinger have shown that it can be generalized to arbitrarily (but finitely) many functions acting on arbitrarily many variables. [2]
Redundant constraint can be identified by solving a linear program as follows. Given a linear constraints system, if the -th inequality is satisfied for any solution of all other inequalities, then it is redundant. Similarly, STIs refers to inequalities that are implied by the non-negativity of information theoretic measures and basic ...
In mathematics, the Riemann series theorem, also called the Riemann rearrangement theorem, named after 19th-century German mathematician Bernhard Riemann, says that if an infinite series of real numbers is conditionally convergent, then its terms can be arranged in a permutation so that the new series converges to an arbitrary real number, and rearranged such that the new series diverges.
In particular, the cost estimate of a solution having +, …, as unassigned variables is added to the cost that derives from the evaluated variables. Virtually, this corresponds on ignoring the evaluated variables and solving the problem on the unassigned ones, except that the latter problem has already been solved.
Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]
The simplest example given by Thimbleby of a possible problem when using an immediate-execution calculator is 4 × (−5). As a written formula the value of this is −20 because the minus sign is intended to indicate a negative number, rather than a subtraction, and this is the way that it would be interpreted by a formula calculator.