Search results
Results from the WOW.Com Content Network
Excel offers many user interface tweaks over the earliest electronic spreadsheets; however, the essence remains the same as in the original spreadsheet software, VisiCalc: the program displays cells organized in rows and columns, and each cell may contain data or a formula, with relative or absolute references to other cells.
The order of operations, that is, the order in which the operations in an expression are usually performed, results from a convention adopted throughout mathematics, science, technology and many computer programming languages.
In traditional spreadsheets, the semantic value of the numbers is lost. The number in cell B2 is not "the number of cars sold in January", but simply "the value in cell B2". The formula for calculating the average is based on the manipulation of the cells, in the form =C2/B2. As the spreadsheet is unaware of the user's desire for D to be an ...
The denominator of a Rule of 78s loan is the sum of the integers between 1 and n, inclusive, where n is the number of payments. For a twelve-month loan, the sum of numbers from 1 to 12 is 78 (1 + 2 + 3 + . . . +12 = 78). For a 24-month loan, the denominator is 300. The sum of the numbers from 1 to n is given by the equation n * (n+1) / 2.
In this example, the rule says: multiply 3 by 2, getting 6. The sets {A, B, C} and {X, Y} in this example are disjoint sets, but that is not necessary.The number of ways to choose a member of {A, B, C}, and then to do so again, in effect choosing an ordered pair each of whose components are in {A, B, C}, is 3 × 3 = 9.
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.
For example, to multiply 7 and 15 modulo 17 in Montgomery form, again with R = 100, compute the product of 3 and 4 to get 12 as above. The extended Euclidean algorithm implies that 8⋅100 − 47⋅17 = 1, so R′ = 8. Multiply 12 by 8 to get 96 and reduce modulo 17 to get 11. This is the Montgomery form of 3, as expected.
For example, to multiply 5.8 by 2.13, the process is the same as to multiply 58 by 213 as described in the preceding section. To find the position of the decimal point in the final answer, one can draw a vertical line from the decimal point in 5.8, and a horizontal line from the decimal point in 2.13. (See picture for Step 4.)