Search results
Results from the WOW.Com Content Network
Like B-trees, R-trees are suitable for large data sets and databases, where nodes can be paged to memory when needed, and the whole tree cannot be kept in main memory. Even if data can be fit in memory (or cached), the R-trees in most practical applications will usually provide performance advantages over naive check of all objects when the ...
In data processing R*-trees are a variant of R-trees used for indexing spatial information. R*-trees have slightly higher construction cost than standard R-trees, as the data may need to be reinserted; but the resulting tree will usually have a better query performance. Like the standard R-tree, it can store both point and spatial data.
The performance of R-trees depends on the quality of the algorithm that clusters the data rectangles on a node. Hilbert R-trees use space-filling curves, and specifically the Hilbert curve, to impose a linear ordering on the data rectangles. The Hilbert value of a rectangle is defined as the Hilbert value of its center.
The R language has native support for object-oriented programming. There are two native frameworks, the so-called S3 and S4 systems. There are two native frameworks, the so-called S3 and S4 systems. The former, being more informal, supports single dispatch on the first argument and objects are assigned to a class by just setting a "class ...
Pages in category "R-tree" The following 6 pages are in this category, out of 6 total. This list may not reflect recent changes. ...
The most important basic example of a datatype that can be defined by mutual recursion is a tree, which can be defined mutually recursively in terms of a forest (a list of trees). Symbolically: f: [t[1], ..., t[k]] t: v f A forest f consists of a list of trees, while a tree t consists of a pair of a value v and a forest f (its children). This ...
Representations might also be more complicated, for example using indexes or ancestor lists for performance. Trees as used in computing are similar to but can be different from mathematical constructs of trees in graph theory, trees in set theory, and trees in descriptive set theory.
The term prioritized arrives from the introduction of four priority-leaves that represents the most extreme values of each dimensions, included in every branch of the tree. Before answering a window-query by traversing the sub-branches, the prioritized R-tree first checks for overlap in its priority nodes. The sub-branches are traversed (and ...