enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    For example, consider the recursive formulation for generating the Fibonacci sequence: F i = F i−1 + F i−2, with base case F 1 = F 2 = 1. Then F 43 = F 42 + F 41, and F 42 = F 41 + F 40. Now F 41 is being solved in the recursive sub-trees of both F 43 as well as F 42. Even though the total number of sub-problems is actually small (only 43 ...

  3. Wythoff array - Wikipedia

    en.wikipedia.org/wiki/Wythoff_array

    Every sequence of positive integers satisfying the Fibonacci recurrence occurs, shifted by at most finitely many positions, in the Wythoff array. In particular, the Fibonacci sequence itself is the first row, and the sequence of Lucas numbers appears in shifted form in the second row (Morrison 1980).

  4. Overlapping subproblems - Wikipedia

    en.wikipedia.org/wiki/Overlapping_subproblems

    For example, the problem of computing the Fibonacci sequence exhibits overlapping subproblems. The problem of computing the nth Fibonacci number F(n), can be broken down into the subproblems of computing F(n − 1) and F(n − 2), and then adding the two.

  5. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    A repfigit, or Keith number, is an integer such that, when its digits start a Fibonacci sequence with that number of digits, the original number is eventually reached. An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47. A repfigit can be a tribonacci sequence if there are 3 digits in the ...

  6. Lagged Fibonacci generator - Wikipedia

    en.wikipedia.org/wiki/Lagged_Fibonacci_generator

    A Lagged Fibonacci generator (LFG or sometimes LFib) is an example of a pseudorandom number generator. This class of random number generator is aimed at being an improvement on the 'standard' linear congruential generator. These are based on a generalisation of the Fibonacci sequence. The Fibonacci sequence may be described by the recurrence ...

  7. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Brasch et al. 2012 show how a generalized Fibonacci sequence also can be connected to the field of economics. [96] In particular, it is shown how a generalized Fibonacci sequence enters the control function of finite-horizon dynamic optimisation problems with one state and one control variable.

  8. Recurrence relation - Wikipedia

    en.wikipedia.org/wiki/Recurrence_relation

    A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients , because the coefficients of the linear function (1 and 1) are constants that do not depend on n . {\displaystyle n.}

  9. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    Plot of the first 10,000 Pisano periods. In number theory, the nth Pisano period, written as π (n), is the period with which the sequence of Fibonacci numbers taken modulo n repeats.