Search results
Results from the WOW.Com Content Network
Probability is the branch of mathematics concerning events and numerical descriptions of how likely they are to occur. The probability of an event is a number between 0 and 1; the larger the probability, the more likely an event is to occur. [note 1] [1] [2] A simple example is the tossing of a fair (unbiased) coin. Since the coin is fair, the ...
Probability theory. In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is The parameter is the mean or expectation of the distribution (and also its median and mode), while ...
t. e. In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of possible outcomes for an experiment. [1][2] It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events (subsets of the sample space). [3]
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms. Typically these axioms formalise probability in terms of a ...
The law of total probability is [1] a theorem that states, in its discrete case, if is a finite or countably infinite set of mutually exclusive and collectively exhaustive events, then for any event. or, alternatively, [1] {\displaystyle P (A)=\sum _ {n}P (A\mid B_ {n})P (B_ {n}),} where, for any , if , then these terms are simply omitted from ...
In probability theory and statistics, the Poisson distribution (/ ˈ p w ɑː s ɒ n /; French pronunciation:) is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time if these events occur with a known constant mean rate and independently of the time since the last event. [1]
t. e. In probability theory, conditional probability is a measure of the probability of an event occurring, given that another event (by assumption, presumption, assertion or evidence) is already known to have occurred. [1] This particular method relies on event A occurring with some sort of relationship with another event B.
Chain rule (probability) In probability theory, the chain rule[1] (also called the general product rule[2][3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities. This rule allows one to express a joint ...