Search results
Results from the WOW.Com Content Network
Cube root. In mathematics, a cube root of a number x is a number y such that y3 = x. All nonzero real numbers have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. For example, the real cube root of 8, denoted , is 2, because 23 = 8, while the other ...
Also, the use of principal cube root may give a wrong result if the coefficients are non-real complex numbers. Moreover, if the coefficients belong to another field, the principal cube root is not defined in general. The second way for making Cardano's formula always correct, is to remark that the product of the two cube roots must be –p / 3.
As for every cubic polynomial, these roots may be expressed in terms of square and cube roots. However, as these three roots are all real, this is casus irreducibilis, and any such expression involves non-real cube roots. As Φ 8 (x) = x 4 + 1, the four primitive eighth roots of unity are the square roots of the primitive fourth roots, ± i.
In the case in which the cubic has only one real root, the real root is given by this expression with the radicands of the cube roots being real and with the cube roots being the real cube roots. In the case of three real roots, the square root expression is an imaginary number; here any real root is expressed by defining the first cube root to ...
Cube (algebra) y = x3 for values of 1 ≤ x ≤ 25. In arithmetic and algebra, the cube of a number n is its third power, that is, the result of multiplying three instances of n together. The cube of a number or any other mathematical expression is denoted by a superscript 3, for example 23 = 8 or (x + 1)3. The cube is also the number ...
If one takes L to be the splitting field of X 3 − a over Q, where a is not a cube in the rational numbers, then L contains a subfield K with three cube roots of 1; that is because if α and β are roots of the cubic polynomial, we shall have (α/β) 3 =1 and the cubic is a separable polynomial. Then L/K is a Kummer extension.
Multivalued function {1,2,3} → {a,b,c,d}. In mathematics, a multivalued function, [1] multiple-valued function, [2] many-valued function, [3] or multifunction, [4] is a function that has two or more values in its range for at least one point in its domain. [5] It is a set-valued function with additional properties depending on context; some ...
The imaginary unit or unit imaginary number (i) is a solution to the quadratic equation x2 + 1 = 0. Although there is no real number with this property, i can be used to extend the real numbers to what are called complex numbers, using addition and multiplication. A simple example of the use of i in a complex number is 2 + 3i.