Search results
Results from the WOW.Com Content Network
In mathematics, the factorial of a non-negative integer , denoted by , is the product of all positive integers less than or equal to . The factorial of also equals the product of with the next smaller factorial: For example, The value of 0! is 1, according to the convention for an empty product. [1]
Recursion (computer science) Tree created using the Logo programming language and relying heavily on recursion. Each branch can be seen as a smaller version of a tree. Recursive drawing of a Sierpiński Triangle through turtle graphics. In computer science, recursion is a method of solving a computational problem where the solution depends on ...
Double factorial. The fifteen different chord diagrams on six points, or equivalently the fifteen different perfect matchings on a six-vertex complete graph. These are counted by the double factorial 15 = (6 − 1)‼. In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that ...
function factorial (n is a non-negative integer) if n is 0 then return 1 [by the convention that 0! = 1] else if n is in lookup-table then return lookup-table-value-for-n else let x = factorial(n – 1) times n [recursively invoke factorial with the parameter 1 less than n] store x in lookup-table in the n th slot [remember the result of n! for ...
The translations shown above show that CPS is a global transformation. The direct-style factorial takes, as might be expected, a single argument; the CPS factorial& takes two: the argument and a continuation. Any function calling a CPS-ed function must either provide a new continuation or pass its own; any calls from a CPS-ed function to a non ...
On the other hand, () is "the number of ways to arrange flags on flagpoles", [8] where all flags must be used and each flagpole can have any number of flags. Equivalently, this is the number of ways to partition a set of size n {\displaystyle n} (the flags) into x {\displaystyle x} distinguishable parts (the poles), with a linear order on the ...
A classic example of recursion is the definition of the factorial function, given here in Python code: def factorial ( n ): if n > 0 : return n * factorial ( n - 1 ) else : return 1 The function calls itself recursively on a smaller version of the input (n - 1) and multiplies the result of the recursive call by n , until reaching the base case ...
Now, to perform our recursive call to the factorial function, we would simply call (Y G) n, where n is the number we are calculating the factorial of. Given n = 4, for example, this gives: (Y G) 4 G (Y G) 4 (λr.λn.(1, if n = 0; else n × (r (n−1)))) (Y G) 4 (λn.(1, if n = 0; else n × ((Y G) (n−1)))) 4