Search results
Results from the WOW.Com Content Network
INT is an assembly language instruction for x86 processors that generates a software interrupt. It takes the interrupt number formatted as a byte value. [1] When written in assembly language, the instruction is written like this: INT X. where X is the software interrupt that should be generated (0-255).
In a multiprocessor system running Microsoft Windows, a processor may interrupt another processor for the following reasons, in addition to the ones listed above: [3] queue a DISPATCH_LEVEL interrupt to schedule a particular thread for execution; kernel debugger breakpoint. IPIs are given an IRQL of 29. [4]
In systems that support privileged mode, only privileged applications (usually the OS kernel) may modify the Interrupt flag. In an x86 system this only applies to protected mode code (Real mode code may always modify the Interrupt flag). CLI and STI are privileged instructions, which cause a general protection fault if an unprivileged ...
The descriptors may be either interrupt gates, trap gates or, for 32-bit protected mode only, task gates. Interrupt and trap gates point to a memory location containing code to execute by specifying both a segment (present in either the GDT or LDT) and an offset within that segment. The only difference between trap and interrupt gates is that ...
The SIGTSTP signal is sent to a process by its controlling terminal to request it to stop (terminal stop). It is commonly initiated by the user pressing Ctrl + Z . Unlike SIGSTOP, the process can register a signal handler for, or ignore, the signal.
An interrupt is scheduled to allow the operating system kernel to switch between processes when their time slices expire, effectively allowing the processor's time to be shared among a number of tasks, giving the illusion that it is dealing with these tasks in parallel (simultaneously). The operating system which controls such a design is ...
Suppose a process A is running and a timer interrupt occurs. The user registers — program counter, stack pointer, and status register — of process A are then implicitly saved by the CPU onto the kernel stack of A. Then, the hardware switches to kernel mode and jumps into interrupt handler for the operating system to take over.
A well-designed and succinct interrupt handler or interrupt service routine (ISR) will not only expeditiously service any event that causes an interrupt, it will do so without interfering in any way with the interrupted foreground task—the ISR must be "transparent" to the interrupted task (although exceptions may apply in specialized cases ...