Search results
Results from the WOW.Com Content Network
Examples of different knots including the trivial knot (top left) and the trefoil knot (below it) A knot diagram of the trefoil knot, the simplest non-trivial knot. In topology, knot theory is the study of mathematical knots.
A few major discoveries in the late 20th century greatly rejuvenated knot theory and brought it further into the mainstream. In the late 1970s William Thurston's hyperbolization theorem introduced the theory of hyperbolic 3-manifolds into knot theory and made it of prime importance. In 1982, Thurston received a Fields Medal, the highest honor ...
Knot theory is the study of mathematical knots. While inspired by knots which appear in daily life in shoelaces and rope, a mathematician's knot differs in that the ends are joined so that it cannot be undone. In precise mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, R 3.
Lickorish and Kenneth Millett won the 1991 Chauvenet Prize for their paper "The New Polynomial Invariants of Knots and Links". [3] Lickorish was included in the 2019 class of fellows of the American Mathematical Society "for contributions to knot theory and low-dimensional topology". [4]
Knot theory is a branch of topology that concerns itself with abstract properties of mathematical knots — the spatial arrangements that in principle could be assumed by a closed loop of string. The main article for this category is Knot theory .
The site is being called “the enchanted forest.” For premium support please call: 800-290-4726 more ways to reach us
In knot theory, prime knots are those knots that are indecomposable under the operation of knot sum. The prime knots with ten or fewer crossings are listed here for quick comparison of their properties and varied naming schemes.
The first work of knot theory to include the Borromean rings was a catalog of knots and links compiled in 1876 by Peter Tait. [3] In recreational mathematics, the Borromean rings were popularized by Martin Gardner, who featured Seifert surfaces for the Borromean rings in his September 1961 "Mathematical Games" column in Scientific American. [19]