Search results
Results from the WOW.Com Content Network
The molar conductivity of an electrolyte solution is defined as its conductivity divided by its molar concentration: [1] [2] =, where κ is the measured conductivity (formerly known as specific conductance), [3] c is the molar concentration of the electrolyte.
The conductivity of a solution of a strong electrolyte at low concentration follows Kohlrausch's Law: =, where Λ 0 m is known as the limiting molar conductivity, K is an empirical constant, and c is the electrolyte concentration. ("Limiting" here means "at the limit of the infinite dilution".)
In practice the molar ionic conductivities are calculated from the measured ion transport numbers and the total molar conductivity. For the cation + = + +, and similarly for the anion. In solutions, where ionic complexation or associaltion are important, two different transport/transference numbers can be defined.
The molar ionic strength, I, of a solution is a function of the concentration of all ions present in that solution. [3]= = where one half is because we are including both cations and anions, c i is the molar concentration of ion i (M, mol/L), z i is the charge number of that ion, and the sum is taken over all ions in the solution.
The conductivity of a water/aqueous solution is highly dependent on its concentration of dissolved salts, and other chemical species that ionize in the solution. Electrical conductivity of water samples is used as an indicator of how salt-free, ion-free, or impurity-free the sample is; the purer the water, the lower the conductivity (the higher ...
Normality is defined as the number of gram or mole equivalents of solute present in one liter of solution.The SI unit of normality is equivalents per liter (Eq/L). = where N is normality, m sol is the mass of solute in grams, EW sol is the equivalent weight of solute, and V soln is the volume of the entire solution in liters.
The Ostwald law of dilution provides a satisfactory description of the concentration dependence of the conductivity of weak electrolytes like CH 3 COOH and NH 4 OH. [3] [4] The variation of molar conductivity is essentially due to the incomplete dissociation of weak electrolytes into ions.
Molar concentration or molarity is most commonly expressed in units of moles of solute per litre of solution. [1] For use in broader applications, it is defined as amount of substance of solute per unit volume of solution, or per unit volume available to the species, represented by lowercase : [2]