Search results
Results from the WOW.Com Content Network
In fluid dynamics, Stokes' law gives the frictional force – also called drag force – exerted on spherical objects moving at very small Reynolds numbers in a viscous fluid. [1] It was derived by George Gabriel Stokes in 1851 by solving the Stokes flow limit for small Reynolds numbers of the Navier–Stokes equations .
All coefficients are in general functions of temperature and composition, and they are called friction functions. In order to achieve high accuracy over a wide pressure and temperature ranges, it turned out that a second order term was needed even for non-polar molecules types such as hydrocarbon fluids in oil and gas reservoirs, in order to ...
In this article, the following conventions and definitions are to be understood: The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density.
Recoded by LuraDocument PDF v2.53: Encrypted: no: Page size: 360 x 595 pts; 353 x 589 pts; 342 x 594 pts; 352 x 596 pts; 356 x 601 pts; 364 x 615 pts; 369 x 618 pts; 353 x 594 pts; 346 x 600 pts; Version of PDF format: 1.5
Stokes' formula can refer to: Stokes' law for friction force in a viscous fluid. Stokes' law (sound attenuation) law describing attenuation of sound in Newtonian liquids. Stokes' theorem on the integration of differential forms. Stokes' formula (gravity) a formula in geodesy
Internal mechanical stresses in a continuous medium are generally related to deformation of the material from some "relaxed" (unstressed) state. These stresses generally include an elastic ("static") stress component, that is related to the current amount of deformation and acts to restore the material to its rest state; and a viscous stress component, that depends on the rate at which the ...
Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. [1] For liquids, it corresponds to the informal concept of thickness; for example, syrup has a higher viscosity than water. [2]
The term ∇ × ( ∇ ∙ τ / ρ ), accounts for the diffusion of vorticity due to the viscous effects. The term ∇ × B provides for changes due to external body forces. These are forces that are spread over a three-dimensional region of the fluid, such as gravity or electromagnetic forces .