Search results
Results from the WOW.Com Content Network
Parabola: the set of points equidistant from a fixed point (the focus) and a line (the directrix). Hyperbola: the set of points for each of which the absolute value of the difference between the distances to two given foci is a constant. Ellipse: the set of points for each of which the sum of the distances to two given foci is a constant
In the theory of quadratic forms, the parabola is the graph of the quadratic form x 2 (or other scalings), while the elliptic paraboloid is the graph of the positive-definite quadratic form x 2 + y 2 (or scalings), and the hyperbolic paraboloid is the graph of the indefinite quadratic form x 2 − y 2. Generalizations to more variables yield ...
In mathematics, the eccentricity of a conic section is a non-negative real number that uniquely characterizes its shape. One can think of the eccentricity as a measure of how much a conic section deviates from being circular. In particular: The eccentricity of a circle is 0. The eccentricity of an ellipse which is not a circle is between 0 and 1.
The major axis is the chord between the two vertices: the longest chord of an ellipse, the shortest chord between the branches of a hyperbola. Its half-length is the semi-major axis ( a ). When an ellipse or hyperbola are in standard position as in the equations below, with foci on the x -axis and center at the origin, the vertices of the conic ...
Graphs of curves y 2 = x 3 − x and y 2 = x 3 − x + 1. Although the formal definition of an elliptic curve requires some background in algebraic geometry, it is possible to describe some features of elliptic curves over the real numbers using only introductory algebra and geometry.
The graph of a real single-variable quadratic function is a parabola. If a quadratic function is equated with zero, then the result is a quadratic equation . The solutions of a quadratic equation are the zeros (or roots ) of the corresponding quadratic function, of which there can be two, one, or zero.
The definition of a projective quadric in a real projective space (see above) can be formally adapted by defining a projective quadric in an n-dimensional projective space over a field. In order to omit dealing with coordinates, a projective quadric is usually defined by starting with a quadratic form on a vector space. [4]
In geometry, the elliptic coordinate system is a two-dimensional orthogonal coordinate system in which the coordinate lines are confocal ellipses and hyperbolae. The two foci F 1 {\displaystyle F_{1}} and F 2 {\displaystyle F_{2}} are generally taken to be fixed at − a {\displaystyle -a} and + a {\displaystyle +a} , respectively, on the x ...