Search results
Results from the WOW.Com Content Network
A function f is concave over a convex set if and only if the function −f is a convex function over the set. The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield.
The term convex is often referred to as convex down or concave upward, and the term concave is often referred as concave down or convex upward. [3] [4] [5] If the term "convex" is used without an "up" or "down" keyword, then it refers strictly to a cup shaped graph .
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
The convex-hull operation is needed for the set of convex sets to form a lattice, in which the "join" operation is the convex hull of the union of two convex sets = = ( ()). The intersection of any collection of convex sets is itself convex, so the convex subsets of a (real or complex) vector space form a complete lattice .
Concave function, the negative of a convex function; Concave polygon, a polygon which is not convex; Concave set; The concavity of a function, determined by its ...
The following are among the properties of log-concave distributions: If a density is log-concave, so is its cumulative distribution function (CDF). If a multivariate density is log-concave, so is the marginal density over any subset of variables. The sum of two independent log-concave random variables is log-concave. This follows from the fact ...
Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function.
Convex polygon, a polygon which encloses a convex set of points; Convex polytope, a polytope with a convex set of points; Convex metric space, a generalization of the convexity notion in abstract metric spaces; Convex function, when the line segment between any two points on the graph of the function lies above or on the graph