Search results
Results from the WOW.Com Content Network
Conjugacy classes may be referred to by describing them, or more briefly by abbreviations such as "6A", meaning "a certain conjugacy class with elements of order 6", and "6B" would be a different conjugacy class with elements of order 6; the conjugacy class 1A is the conjugacy class of the identity which has order 1.
In 1912 Dehn gave an algorithm that solves both the word and conjugacy problem for the fundamental groups of closed orientable two-dimensional manifolds of genus greater than or equal to 2 (the genus 0 and genus 1 cases being trivial). It is known that the conjugacy problem is undecidable for many classes of groups. Classes of group ...
S 6 has exactly one (class) of outer automorphisms: Out(S 6) = C 2. To see this, observe that there are only two conjugacy classes of S 6 of size 15: the transpositions and those of class 2 3. Each element of Aut(S 6) either preserves each of these conjugacy classes, or exchanges them. Any representative of the outer automorphism constructed ...
All the reflections are conjugate to each other whenever n is odd, but they fall into two conjugacy classes if n is even. If we think of the isometries of a regular n-gon: for odd n there are rotations in the group between every pair of mirrors, while for even n only half of the mirrors can be reached from one by these rotations. Geometrically ...
The irreducible complex characters of a finite group form a character table which encodes much useful information about the group G in a concise form. Each row is labelled by an irreducible character and the entries in the row are the values of that character on any representative of the respective conjugacy class of G (because characters are class functions).
The conjugacy classes of T are: identity; 4 × rotation by 120°, order 3, cw; 4 × rotation by 120°, order 3, ccw; 3 × rotation by 180°, order 2; The octahedral group of order 24, rotational symmetry group of the cube and the regular octahedron. It is isomorphic to S 4. The conjugacy classes of O are: identity; 6 × rotation by ±90 ...
The finite group is abelian if and only if =.; One has = #where () is the number of conjugacy classes of .. If is not abelian then () / (this result is sometimes called the 5/8 theorem [5]) and this upper bound is sharp: there are infinitely many finite groups such that () = /, the smallest one being the dihedral group of order 8.
We can easily distinguish three kinds of permutations of the three blocks, the conjugacy classes of the group: no change (), a group element of order 1; interchanging two blocks: (RG), (RB), (GB), three group elements of order 2; a cyclic permutation of all three blocks: (RGB), (RBG), two group elements of order 3