Search results
Results from the WOW.Com Content Network
Then r 2 /2 = 18. The three factor-pairs of 18 are (1, 18), (2, 9), and (3, 6). All three factor pairs will produce triples using the above equations. s = 1, t = 18 produces the triple [7, 24, 25] because x = 6 + 1 = 7, y = 6 + 18 = 24, z = 6 + 1 + 18 = 25. s = 2, t = 9 produces the triple [8, 15, 17] because x = 6 + 2 = 8, y = 6 + 9 = 15, z ...
Animation demonstrating the smallest Pythagorean triple, 3 2 + 4 2 = 5 2. A Pythagorean triple consists of three positive integers a, b, and c, such that a 2 + b 2 = c 2. Such a triple is commonly written (a, b, c), a well-known example is (3, 4, 5). If (a, b, c) is a Pythagorean triple, then so is (ka, kb, kc) for any positive integer k.
In the aquaculture experiment, the ordered triple (25, 80, 10) represents the treatment combination having the lowest level of each factor. In a general 2×3 experiment the ordered pair (2, 1) would indicate the cell in which factor A is at level 2 and factor B at level 1. The parentheses are often dropped, as shown in the accompanying table.
The generator of any continuous symmetry implied by Noether's theorem, the generators of a Lie group being a special case. In this case, a generator is sometimes called a charge or Noether charge, examples include: angular momentum as the generator of rotations, [3] linear momentum as the generator of translations, [3]
For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x 2 – 4. Factorization is not usually considered meaningful within number systems possessing division , such as the real or complex numbers , since any x {\displaystyle x} can be trivially written as ( x y ) × ( 1 / y ) {\displaystyle ...
Here’s an example using the $100,000 loan with a factor rate of 1.5 and a two-year (730 days) repayment period: Step 1: 1.50 – 1 = 0.50 Step 2: .50 x 365 = 182.50
Geometric representation (Argand diagram) of and its conjugate ¯ in the complex plane.The complex conjugate is found by reflecting across the real axis.. In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign.
If two or more factors of a polynomial are identical, then the polynomial is a multiple of the square of this factor. The multiple factor is also a factor of the polynomial's derivative (with respect to any of the variables, if several). For univariate polynomials, multiple factors are equivalent to multiple roots (over a suitable extension field).