Search results
Results from the WOW.Com Content Network
(This is just a consequence of the fact that the inverse of an N×M transpose is an M×N transpose, although it is also easy to show explicitly that P −1 composed with P gives the identity.) As proved by Cate & Twigg (1977), the number of fixed points (cycles of length 1) of the permutation is precisely 1 + gcd( N −1, M −1) , where gcd is ...
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]
A graph and its transpose In the mathematical and algorithmic study of graph theory , the converse , [ 1 ] transpose [ 2 ] or reverse [ 3 ] of a directed graph G is another directed graph on the same set of vertices with all of the edges reversed compared to the orientation of the corresponding edges in G .
Multiplying a matrix M by either or on either the left or the right will permute either the rows or columns of M by either π or π −1.The details are a bit tricky. To begin with, when we permute the entries of a vector (, …,) by some permutation π, we move the entry of the input vector into the () slot of the output vector.
Google Sheets is a spreadsheet application and part of the free, web-based Google Docs Editors suite offered by Google. Google Sheets is available as a web application; a mobile app for: Android, iOS, and as a desktop application on Google's ChromeOS. The app is compatible with Microsoft Excel file formats. [5]
The conjugate transpose of a matrix with real entries reduces to the transpose of , as the conjugate of a real number is the number itself. The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by 2 × 2 {\displaystyle 2\times 2} real matrices, obeying matrix addition and multiplication: [ 3 ]
A single columnar transposition could be attacked by guessing possible column lengths, writing the message out in its columns (but in the wrong order, as the key is not yet known), and then looking for possible anagrams. Thus to make it stronger, a double transposition was often used. This is simply a columnar transposition applied twice.
The transpose of a symmetrizable matrix is symmetrizable, since = = = and is symmetric. A matrix A = ( a i j ) {\displaystyle A=(a_{ij})} is symmetrizable if and only if the following conditions are met: