Search results
Results from the WOW.Com Content Network
Liquid water and ice emit radiation at a higher rate than water vapour (see graph above). Water at the top of the troposphere, particularly in liquid and solid states, cools as it emits net photons to space. Neighboring gas molecules other than water (e.g. nitrogen) are cooled by passing their heat kinetically to the water.
The phenomenon, when taken to mean "hot water freezes faster than cold", is difficult to reproduce or confirm because it is ill-defined. [4] Monwhea Jeng proposed a more precise wording: "There exists a set of initial parameters, and a pair of temperatures, such that given two bodies of water identical in these parameters, and differing only in initial uniform temperatures, the hot one will ...
If the environmental lapse rate is less than the moist adiabatic lapse rate, the air is absolutely stable — rising air will cool faster than the surrounding air and lose buoyancy. This often happens in the early morning, when the air near the ground has cooled overnight. Cloud formation in stable air is unlikely.
Microwave volumetric heating (MVH) overcomes the uneven absorption by applying an intense, uniform microwave field. Different compounds convert microwave radiation to heat by different amounts. This selectivity allows some parts of the object being heated to heat more quickly or more slowly than others (particularly the reaction vessel).
Water vapor reflects radar to a lesser extent than do water's other two phases. In the form of drops and ice crystals, water acts as a prism, which it does not do as an individual molecule; however, the existence of water vapor in the atmosphere causes the atmosphere to act as a giant prism. [49]
Whether the Earth was a complete solid snowball (completely frozen over), or a slush ball with a thin equatorial band of water still remains debated, but the ice–albedo feedback mechanism remains important for both cases. [29] Further, the end of the Snowball Earth periods would have also involved the ice-albedo feedback.
That sloshing around can influence the speed of the Earth’s spin, ABC reported. Some scientists think this could be the beginning of a new period of shorter days, Interesting Engineering reported.
Most water in Earth's atmosphere and crust comes from saline seawater, while fresh water accounts for nearly 1% of the total. The vast bulk of the water on Earth is saline or salt water, with an average salinity of 35‰ (or 3.5%, roughly equivalent to 34 grams of salts in 1 kg of seawater), though this varies slightly according to the amount of runoff received from surrounding land.