Search results
Results from the WOW.Com Content Network
Hydroaluminations of terminal alkynes typically produce terminal alkenylalanes as a result. Selectivity in hydroaluminations of internal alkynes is typically low, unless an electronic bias exists in the substrate (such as a phenyl ring in conjugation with the alkyne).
In organic chemistry, alkynylation is an addition reaction in which a terminal alkyne (−C≡CH) is added to a carbonyl group (C=O) to form an α-alkynyl alcohol (R 2 C(−OH)−C≡C−R). [1] [2] When the acetylide is formed from acetylene (HC≡CH), the reaction gives an α-ethynyl alcohol. This process is often referred to as ethynylation.
It is a terminal alkyne, in fact the smallest that is liquid at room temperature. The compound is a common terminal alkyne substrate in diverse studies of catalysis. The compound is a common terminal alkyne substrate in diverse studies of catalysis.
Terminal alkynes have the formula RC≡CH, where at least one end of the alkyne is a hydrogen atom. An example is methylacetylene (propyne using IUPAC nomenclature). They are often prepared by alkylation of monosodium acetylide. [4] Terminal alkynes, like acetylene itself, are mildly acidic, with pK a values of around 25.
Schwartz's reagent is the common name for the organozirconium compound with the formula (C 5 H 5) 2 ZrHCl, sometimes called zirconocene hydrochloride or zirconocene chloride hydride, and is named after Jeffrey Schwartz, a chemistry professor at Princeton University.
It is a terminal alkyne. The compound is a common terminal alkyne substrate in diverse studies of catalysis. It is a colorless combustible gas. [1] 1-Butyne participates in reactions typical for terminal alkynes, such as alkyne metathesis, [2] hydrogenation, condensation with formaldehyde.
It is a terminal alkyne. A colorless liquid, 1-decyne is used as a model substrate when evaluating methodology in organic synthesis . It participates in a number of classical reactions including Suzuki-Miyaura couplings , Sonogashira couplings , [ 1 ] Huisgen cycloadditions , [ 2 ] and borylations .
The Hay coupling is variant of the Glaser coupling. It relies on the TMEDA complex of copper(I) chloride to activate the terminal alkyne. Oxygen (air) is used in the Hay variant to oxidize catalytic amounts of Cu(I) to Cu(II) throughout the reaction, as opposed to a stoichiometric amount of Cu(II) used in the Eglington variant. [7]