Search results
Results from the WOW.Com Content Network
The Whitehead theorem does not hold for general topological spaces or even for all subspaces of R n. For example, the Warsaw circle , a compact subset of the plane, has all homotopy groups zero, but the map from the Warsaw circle to a single point is not a homotopy equivalence.
This is well-defined because the intersection of a cycle and a boundary consists of an even number of points (by definition of a cycle and a boundary). If M {\displaystyle M} is oriented, analogously (i.e. counting intersections with signs) one defines the intersection form on the 2 {\displaystyle 2} nd homology group
Through further reductions, it is possible to identify the homology of with the cohomology of . This is useful in algebraic geometry for computing the cohomology groups of projective varieties , and is exploited for constructing a basis of the Hodge structure of hypersurfaces of degree d {\displaystyle d} using the Jacobian ring .
CW complexes satisfy the Whitehead theorem: a map between CW complexes is a homotopy equivalence if and only if it induces an isomorphism on all homotopy groups. A covering space of a CW complex is also a CW complex. [13] The product of two CW complexes can be made into a CW complex.
An alternative point-of-view can be based on representing cohomology via Eilenberg–MacLane space where the map h takes a homotopy class of maps from X to K(G, i) to the corresponding homomorphism induced in homology. Thus, the Eilenberg–MacLane space is a weak right adjoint to the homology functor. [1]
The reduced homology should replace this group, of rank r say, by one of rank r − 1. Otherwise the homology groups should remain unchanged. An ad hoc way to do this is to think of a 0-th homology class not as a formal sum of connected components, but as such a formal sum where the coefficients add up to zero.
A "homology-like" theory satisfying all of the Eilenberg–Steenrod axioms except the dimension axiom is called an extraordinary homology theory (dually, extraordinary cohomology theory). Important examples of these were found in the 1950s, such as topological K-theory and cobordism theory , which are extraordinary co homology theories, and ...
It is a theorem, proved first by Frank Adams, and subsequently by Adams and Michael Atiyah with methods of topological K-theory, that these are the only maps with Hopf invariant 1. Whitehead integral formula