Search results
Results from the WOW.Com Content Network
The order of an element of a group (also called period length or period) is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication , the order of an element a of a group, is thus the smallest positive integer m such that a m = e , where e denotes the identity element of the group, and a m ...
Each group is named by Small Groups library as G o i, where o is the order of the group, and i is the index used to label the group within that order. Common group names: Z n: the cyclic group of order n (the notation C n is also used; it is isomorphic to the additive group of Z/nZ) Dih n: the dihedral group of order 2n (often the notation D n ...
For n > 1, the maximal nilpotency class of a group of order p n is n - 1 (for example, a group of order p 2 is abelian). The 2-groups of maximal class are the generalised quaternion groups, the dihedral groups, and the semidihedral groups. Furthermore, every finite nilpotent group is the direct product of p-groups. [5]
The 5th roots of unity in the complex plane form a group under multiplication. Each non-identity element generates the group. In abstract algebra, a generating set of a group is a subset of the group set such that every element of the group can be expressed as a combination (under the group operation) of finitely many elements of the subset and their inverses.
Another characterization is that a finite p-group in which there is a unique subgroup of order p is either cyclic or a 2-group isomorphic to generalized quaternion group. [13] In particular, for a finite field F with odd characteristic, the 2-Sylow subgroup of SL 2 ( F ) is non-abelian and has only one subgroup of order 2, so this 2-Sylow ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Subgroup series can simplify the study of a group to the study of simpler subgroups and their relations, and several subgroup series can be invariantly defined and are important invariants of groups. A subgroup series is used in the subgroup method. Subgroup series are a special example of the use of filtrations in abstract algebra.
The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...