Search results
Results from the WOW.Com Content Network
The electrons are then transferred through the FMN via a series of iron-sulfur (Fe-S) clusters, [10] and finally to coenzyme Q10 (ubiquinone). This electron flow changes the redox state of the protein, inducing conformational changes of the protein which alters the p K values of ionizable side chain, and causes four hydrogen ions to be pumped ...
In cellular metabolism, NAD is involved in redox reactions, carrying electrons from one reaction to another, so it is found in two forms: NAD + is an oxidizing agent, accepting electrons from other molecules and becoming reduced; with H +, this reaction forms NADH, which can be used as a reducing agent to donate electrons.
In the mitochondria, electrons are transferred within the intermembrane space by the water-soluble electron transfer protein cytochrome c. [8] This carries only electrons, and these are transferred by the reduction and oxidation of an iron atom that the protein holds within a heme group in its structure.
From there the NADH and FADH go into the NADH reductase, which produces the enzyme. The NADH pulls the enzyme's electrons to send through the electron transport chain. The electron transport chain pulls H + ions through the chain. From the electron transport chain, the released hydrogen ions make ADP for an result of 32 ATP.
In this case, the enzyme is taking electrons from the substrate, and using free protons to reduce the oxygen, leaving the substrate with a positive charge. The product is water, instead of hydrogen peroxide as seen above. An example of an oxidase that functions like this is complex IV in the Electron Transport Chain . [6]
Ferredoxin: NADP + reductase is the last enzyme in the transfer of electrons during photosynthesis from photosystem I to NADPH. [2] The NADPH is then used as a reducing equivalent in the reactions of the Calvin cycle. [2] Electron cycling from ferredoxin to NADPH only occurs in the light in part because FNR activity is inhibited in the dark. [11]
The other hydrogen bonding network includes residues Lys120 and Asp260, as well as an ordered water molecule (with a B-factor of 16.4 Å2), which hydrogen bonds to Gly149 and Asn151 (not shown). In these two electrostatic networks, only the ε-NH 3 + group of Lys204 is the nearest to the C2 atom of DHAP (3.4 Å).
This process occurs naturally in plants photosystem II to provide protons and electrons for the photosynthesis process and release oxygen to the atmosphere, [1] as well as in some electrowinning processes. [2] Since hydrogen can be used as an alternative clean burning fuel, there has been a need to split water efficiently.