enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]

  3. PS Power and Sample Size - Wikipedia

    en.wikipedia.org/wiki/PS_Power_and_Sample_Size

    Matched or independent study designs may be used. Power, sample size, and the detectable alternative hypothesis are interrelated. The user specifies any two of these three quantities and the program derives the third. A description of each calculation, written in English, is generated and may be copied into the user's documents.

  4. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    Specifically, while one needs a suitably large sample size to draw valid statistical conclusions, the data must be cleaned before it can be used. Cleansing typically involves a significant human component, and is typically specific to the dataset and the analytical problem, and therefore takes time and money. For example:

  5. Fisher's exact test - Wikipedia

    en.wikipedia.org/wiki/Fisher's_exact_test

    Fisher's exact test (also Fisher-Irwin test) is a statistical significance test used in the analysis of contingency tables. [1] [2] [3] Although in practice it is employed when sample sizes are small, it is valid for all sample sizes.

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. Insensitivity to sample size - Wikipedia

    en.wikipedia.org/wiki/Insensitivity_to_sample_size

    Insensitivity to sample size is a cognitive bias that occurs when people judge the probability of obtaining a sample statistic without respect to the sample size.For example, in one study, subjects assigned the same probability to the likelihood of obtaining a mean height of above six feet [183 cm] in samples of 10, 100, and 1,000 men.

  8. Sample maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Sample_maximum_and_minimum

    The minimum and the maximum value are the first and last order statistics (often denoted X (1) and X (n) respectively, for a sample size of n). If the sample has outliers, they necessarily include the sample maximum or sample minimum, or both, depending on whether they are extremely high or low. However, the sample maximum and minimum need not ...

  9. Probability-proportional-to-size sampling - Wikipedia

    en.wikipedia.org/wiki/Probability-proportional...

    [4]: 250 So, for example, if we have 3 clusters with 10, 20 and 30 units each, then the chance of selecting the first cluster will be 1/6, the second would be 1/3, and the third cluster will be 1/2. The pps sampling results in a fixed sample size n (as opposed to Poisson sampling which is similar but results in a random sample size with ...