enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Charles Kuta - Wikipedia

    en.wikipedia.org/wiki/Charles_Kuta

    Charles Stanley "Herb" Kuta (born 1956) is an American electronics engineer and software engineer who was a co-founder of Silicon Graphics, a major graphics workstation manufacturer. Biography [ edit ]

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  4. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.

  5. Active and passive transformation - Wikipedia

    en.wikipedia.org/wiki/Active_and_passive...

    A rotation of the vector through an angle θ in counterclockwise direction is given by the rotation matrix: = (⁡ ⁡ ⁡ ⁡), which can be viewed either as an active transformation or a passive transformation (where the above matrix will be inverted), as described below.

  6. Conversion between quaternions and Euler angles - Wikipedia

    en.wikipedia.org/wiki/Conversion_between...

    z-y′-x″ sequence (intrinsic rotations; N coincides with y’). The angle rotation sequence is ψ, θ, φ. Note that in this case ψ > 90° and θ is a negative angle. Similarly for Euler angles, we use the Tait Bryan angles (in terms of flight dynamics): Heading – : rotation about the Z-axis

  7. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  8. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    Rotations are not commutative (for example, rotating R 90° in the x-y plane followed by S 90° in the y-z plane is not the same as S followed by R), making the 3D rotation group a nonabelian group. Moreover, the rotation group has a natural structure as a manifold for which the group operations are smoothly differentiable, so it is in fact a ...

  9. Givens rotation - Wikipedia

    en.wikipedia.org/wiki/Givens_rotation

    In numerical linear algebra, a Givens rotation is a rotation in the plane spanned by two coordinates axes. Givens rotations are named after Wallace Givens , who introduced them to numerical analysts in the 1950s while he was working at Argonne National Laboratory .