Search results
Results from the WOW.Com Content Network
Composition over inheritance (or composite reuse principle) in object-oriented programming (OOP) is the principle that classes should favor polymorphic behavior and code reuse by their composition (by containing instances of other classes that implement the desired functionality) over inheritance from a base or parent class. [2]
The class A serves as a base class for the derived class B, which in turn serves as a base class for the derived class C. The class B is known as intermediate base class because it provides a link for the inheritance between A and C. The chain ABC is known as inheritance path. A derived class with multilevel inheritance is declared as follows:
In software development, the yo-yo problem is an anti-pattern that occurs when a programmer has to read and understand a program whose inheritance graph is so long and complicated that the programmer has to keep flipping between many different class definitions in order to follow the control flow of the program.
The g++ compiler implements the multiple inheritance of the classes B1 and B2 in class D using two virtual method tables, one for each base class. (There are other ways to implement multiple inheritance, but this is the most common.) This leads to the necessity for "pointer fixups", also called thunks, when casting. Consider the following C++ code:
Object-oriented programming (OOP) is a programming paradigm based on the concept of objects, [1] which can contain data and code: data in the form of fields (often known as attributes or properties), and code in the form of procedures (often known as methods).
C3 superclass linearization is an algorithm used primarily to obtain the order in which methods should be inherited in the presence of multiple inheritance.In other words, the output of C3 superclass linearization is a deterministic Method Resolution Order (MRO).
The curiously recurring template pattern (CRTP) is an idiom, originally in C++, in which a class X derives from a class template instantiation using X itself as a template argument. [1] More generally it is known as F-bound polymorphism, and it is a form of F-bounded quantification.
Interface specifications can be reused through inheritance but implementation need not be. The existing interface is closed to modifications and new implementations must, at a minimum, implement that interface. Robert C. Martin's 1996 article "The Open-Closed Principle" [2] was one of the seminal