Search results
Results from the WOW.Com Content Network
The algorithm performs summation with two accumulators: sum holds the sum, and c accumulates the parts not assimilated into sum, to nudge the low-order part of sum the next time around. Thus the summation proceeds with "guard digits" in c , which is better than not having any, but is not as good as performing the calculations with double the ...
Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.
Usually, the second sum will be multiplied by 256 and added to the simple checksum, effectively stacking the sums side-by-side in a 16-bit word with the simple checksum at the least significant end. This algorithm is then called the Fletcher-16 checksum. The use of the modulus 2 8 − 1 = 255 is also generally implied.
Pairwise summation is the default summation algorithm in NumPy [9] and the Julia technical-computing language, [10] where in both cases it was found to have comparable speed to naive summation (thanks to the use of a large base case).
In computational complexity theory, the 3SUM problem asks if a given set of real numbers contains three elements that sum to zero. A generalized version, k-SUM, asks the same question on k elements, rather than simply 3. 3SUM can be easily solved in () time, and matching (⌈ / ⌉) lower bounds are known in some specialized models of computation (Erickson 1999).
sum with circular rotation sum8 8 bits sum Internet Checksum: 16 bits sum (ones' complement) sum24 24 bits sum sum32 32 bits sum fletcher-4: 4 bits sum fletcher-8: 8 bits sum fletcher-16: 16 bits sum fletcher-32: 32 bits sum Adler-32: 32 bits sum xor8: 8 bits sum Luhn algorithm: 1 decimal digit sum Verhoeff algorithm: 1 decimal digit sum Damm ...
The run-time of this algorithm is at most linear in the number of states. The number of states is at most N times the number of different possible sums. Let A be the sum of the negative values and B the sum of the positive values; the number of different possible sums is at most B-A, so the total runtime is in (()).
In numerical analysis, the Clenshaw algorithm, also called Clenshaw summation, is a recursive method to evaluate a linear combination of Chebyshev polynomials. [ 1 ] [ 2 ] The method was published by Charles William Clenshaw in 1955.