enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Metre per second squared - Wikipedia

    en.wikipedia.org/wiki/Metre_per_second_squared

    Its symbol is written in several forms as m/s 2, m·s −2 or ms −2, , or less commonly, as (m/s)/s. [ 1 ] As acceleration, the unit is interpreted physically as change in velocity or speed per time interval, i.e. metre per second per second and is treated as a vector quantity.

  3. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    In classical mechanics, for a body with constant mass, the (vector) acceleration of the body's center of mass is proportional to the net force vector (i.e. sum of all forces) acting on it (Newton's second law): = =, where F is the net force acting on the body, m is the mass of the body, and a is the center-of-mass acceleration.

  4. List of common physics notations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_physics...

    tesla meter (T⋅m) area: square meter (m 2) amplitude: meter: atomic mass number: unitless acceleration: meter per second squared (m/s 2) magnetic flux density also called the magnetic field density or magnetic induction tesla (T), or equivalently, weber per square meter (Wb/m 2)

  5. Newton (unit) - Wikipedia

    en.wikipedia.org/wiki/Newton_(unit)

    A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force.

  6. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    M T −2: Thermal conductance κ (or) λ: Measure for the ease with which an object conducts heat W/K L 2 M T −3 Θ −1: extensive Thermal conductivity: λ: Measure for the ease with which a material conducts heat W/(m⋅K) L M T −3 Θ −1: intensive Thermal resistance R: Measure for the ease with which an object resists conduction of ...

  7. Matter - Wikipedia

    en.wikipedia.org/wiki/Matter

    In this definition, there is a critical pressure and an associated critical density, and when nuclear matter (made of protons and neutrons) is compressed beyond this density, the protons and neutrons dissociate into quarks, yielding quark matter (probably strange matter). The narrower meaning is quark matter that is more stable than nuclear matter.

  8. List of states of matter - Wikipedia

    en.wikipedia.org/wiki/List_of_states_of_matter

    Strange matter: A type of quark matter that may exist inside some neutron stars close to the Tolman–Oppenheimer–Volkoff limit (approximately 2–3 solar masses). May be stable at lower energy states once formed. Quark matter: Hypothetical phases of matter whose degrees of freedom include quarks and gluons Color-glass condensate

  9. List of physical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_constants

    For example, the atomic mass constant is exactly known when expressed using the dalton (its value is exactly 1 Da), but the kilogram is not exactly known when using these units, the opposite of when expressing the same quantities using the kilogram.