Search results
Results from the WOW.Com Content Network
1 microsecond – the length of time of a high-speed, commercial strobe light flash (see air-gap flash). 1 microsecond – protein folding takes place on the order of microseconds (thus this is the speed of carbon-based life). 1.8 microseconds – the amount of time subtracted from the Earth's day as a result of the 2011 Japanese earthquake. [1]
A simple calculation reveals that a radar echo will take approximately 10.8 μs to return from a target 1 statute mile away (counting from the leading edge of the transmitter pulse (T 0), (sometimes known as transmitter main bang)). For convenience, these figures may also be expressed as 1 nautical mile in 12.4 μs or 1 kilometre in 6.7 μs.
Functions of space, time, or any other dimension can be sampled, and similarly in two or more dimensions. For functions that vary with time, let () be a continuous function (or "signal") to be sampled, and let sampling be performed by measuring the value of the continuous function every seconds, which is called the sampling interval or sampling period.
One hundredth of one second 1.6667 cs: The period of a frame at a frame rate of 60 Hz. 2 cs: The cycle time for European 50 Hz AC electricity 10–20 cs (=0.1–0.2 s): The human reflex response to visual stimuli 10 −1: decisecond ds One tenth of a second 1–4 ds (=0.1–0.4 s): The length of a single blink of an eye [14]
Electromagnetic (e.g. radio or light) waves are conceptually pure single frequency phenomena while pulses may be mathematically thought of as composed of a number of pure frequencies that sum and nullify in interactions that create a pulse train of the specific amplitudes, PRRs, base frequencies, phase characteristics, et cetera (See Fourier Analysis).
The Precision Time Protocol (PTP) is a protocol for clock synchronization throughout a computer network with relatively high precision and therefore potentially high accuracy. . In a local area network (LAN), accuracy can be sub-microsecond – making it suitable for measurement and control systems.
The concept is explained with an example below. Consider a dynamic image where each table represents an image, obtained at different times, let's say at time t=1 sec, t=2 sec, t=3 sec, t=4 sec, t=5 sec, and t=6 sec. In this image, let's assume, each voxel shows the concentration of tracer in the units Bq per ml.
The simulation must keep track of the current simulation time, in whatever measurement units are suitable for the system being modeled. In discrete-event simulations, as opposed to continuous simulations, time 'hops' because events are instantaneous – the clock skips to the next event start time as the simulation proceeds.