enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sobolev inequality - Wikipedia

    en.wikipedia.org/wiki/Sobolev_inequality

    The inequality expressing this fact has constants that do not involve the dimension of the space and, thus, the inequality holds in the setting of a Gaussian measure on an infinite-dimensional space. It is now known that logarithmic Sobolev inequalities hold for many different types of measures, not just Gaussian measures.

  3. Poincaré inequality - Wikipedia

    en.wikipedia.org/wiki/Poincaré_inequality

    For example, the approach based on "upper gradients" leads to Newtonian-Sobolev space of functions. Thus, it makes sense to say that a space "supports a Poincare inequality". It turns out that whether a space supports any Poincare inequality and if so, the critical exponent for which it does, is tied closely to the geometry of the space.

  4. Logarithmic Sobolev inequalities - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_Sobolev...

    In mathematics, logarithmic Sobolev inequalities are a class of inequalities involving the norm of a function f, its logarithm, and its gradient . These inequalities were discovered and named by Leonard Gross, who established them in dimension-independent form, [1] [2] in the context of constructive quantum field theory. Similar results were ...

  5. Gagliardo–Nirenberg interpolation inequality - Wikipedia

    en.wikipedia.org/wiki/Gagliardo–Nirenberg...

    In mathematics, and in particular in mathematical analysis, the Gagliardo–Nirenberg interpolation inequality is a result in the theory of Sobolev spaces that relates the -norms of different weak derivatives of a function through an interpolation inequality.

  6. Trudinger's theorem - Wikipedia

    en.wikipedia.org/wiki/Trudinger's_theorem

    In mathematical analysis, Trudinger's theorem or the Trudinger inequality (also sometimes called the Moser–Trudinger inequality) is a result of functional analysis on Sobolev spaces. It is named after Neil Trudinger (and Jürgen Moser). It provides an inequality between a certain Sobolev space norm and an Orlicz space norm of a

  7. Sobolev conjugate - Wikipedia

    en.wikipedia.org/wiki/Sobolev_conjugate

    The Sobolev conjugate of p for <, where n is space dimensionality, is p ∗ = p n n − p > p {\displaystyle p^{*}={\frac {pn}{n-p}}>p} This is an important parameter in the Sobolev inequalities .

  8. Pólya–Szegő inequality - Wikipedia

    en.wikipedia.org/wiki/Pólya–Szegő_inequality

    The isoperimetric inequality can be deduced from the Pólya–Szegő inequality with =. The optimal constant in the Sobolev inequality can be obtained by combining the Pólya–Szegő inequality with some integral inequalities. [2] [3]

  9. Sobolev space - Wikipedia

    en.wikipedia.org/wiki/Sobolev_space

    In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of L p-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete , i.e. a Banach space .