Search results
Results from the WOW.Com Content Network
The axon hillock is the last site in the soma where membrane potentials propagated from synaptic inputs are summated before being transmitted to the axon. [2] For many years, it was believed that the axon hillock was the usual site of initiation of action potentials—the trigger zone.
Oligodendrocytes are a type of glial cell, non-neuronal cells in the central nervous system.They arise during development from oligodendrocyte precursor cells (OPCs), [8] which can be identified by their expression of a number of antigens, including the ganglioside GD3, [9] [10] [11] the NG2 chondroitin sulfate proteoglycan, and the platelet-derived growth factor-alpha receptor subunit (PDGF ...
These electrical signals may be excitatory or inhibitory, and, if the total of excitatory influences exceeds that of the inhibitory influences, the neuron will generate a new action potential at its axon hillock, thus transmitting the information to yet another cell. [1] This phenomenon is known as an excitatory postsynaptic potential (EPSP).
An axo-axonic synapse is a type of synapse, formed by one neuron projecting its axon terminals onto another neuron's axon. [1]Axo-axonic synapses have been found and described more recently than the other more familiar types of synapses, such as axo-dendritic synapses and axo-somatic synapses.
The action potential, which typically starts at the axon hillock, propagates down the length of the axon to the axon terminals where it triggers the release of neurotransmitters, but also backwards into the dendrite (retrograde propagation), providing an important signal for spike-timing-dependent plasticity (STDP). [4]
Detail showing microtubules at axon hillock and initial segment. The axon hillock is the area formed from the cell body of the neuron as it extends to become the axon. It precedes the initial segment. The received action potentials that are summed in the neuron are transmitted to the axon hillock for the generation of an action potential from ...
The area in the axon that holds groups of vesicles is an axon terminal or "terminal bouton". Up to 130 vesicles can be released per bouton over a ten-minute period of stimulation at 0.2 Hz. [1] In the visual cortex of the human brain, synaptic vesicles have an average diameter of 39.5 nanometers (nm) with a standard deviation of 5.1 nm. [2]
Neural backpropagation is the phenomenon in which, after the action potential of a neuron creates a voltage spike down the axon (normal propagation), another impulse is generated from the soma and propagates towards the apical portions of the dendritic arbor or dendrites (from which much of the original input current originated).