Search results
Results from the WOW.Com Content Network
The temperature decreases with the dry adiabatic lapse rate, until it hits the dew point, where water vapor in the air begins to condense. Above that altitude, the adiabatic lapse rate decreases to the moist adiabatic lapse rate as the air continues to rise.
The tropopause is defined as the lowest level at which the lapse rate decreases to 2°C/km or less, provided that the average lapse-rate, between that level and all other higher levels within 2.0 km does not exceed 2°C/km. [1] The tropopause is a first-order discontinuity surface, in which temperature as a function of height varies ...
Atmospheric temperature is a measure of temperature at different levels of the Earth's atmosphere. It is governed by many factors, including incoming solar radiation , humidity , and altitude . The abbreviation MAAT is often used for Mean Annual Air Temperature of a geographical location.
The temperature of the troposphere decreases with increased altitude, and the rate of decrease in air temperature is measured with the Environmental Lapse Rate (/) which is the numeric difference between the temperature of the planetary surface and the temperature of the tropopause divided by the altitude.
With a temperature lapse rate of −6.5 °C (-11.7 °F) per km (roughly −2 °C (-3.6 °F) per 1,000 ft), the table interpolates to the standard mean sea level values of 15 °C (59 °F) temperature, 101,325 pascals (14.6959 psi) (1 atm) pressure, and a density of 1.2250 kilograms per cubic meter (0.07647 lb/cu ft).
In the mesosphere, temperature decreases as altitude increases. This characteristic is used to define limits: it begins at the top of the stratosphere (sometimes called the stratopause), and ends at the mesopause, which is the coldest part of Earth's atmosphere, with temperatures below −143 °C (−225 °F; 130 K).
World leaders are meeting in Paris this month in what amounts to a last-ditch effort to avert the worst ravages of climate change. Climatologists now say that the best case scenario — assuming immediate and dramatic emissions curbs — is that planetary surface temperatures will increase by at least 2 degrees Celsius in the coming decades.
The stratosphere defines a layer in which temperatures rise with increasing altitude. This rise in temperature is caused by the absorption of ultraviolet radiation (UV) from the Sun by the ozone layer, which restricts turbulence and mixing. Although the temperature may be −60 °C (−76 °F; 210 K) at the tropopause, the top of the ...