Search results
Results from the WOW.Com Content Network
Another notable example is the only naturally occurring isotope of bismuth, bismuth-209, which has been predicted to be unstable with a very long half-life, but has been observed to decay. Because of their long half-lives, such isotopes are still found on Earth in various quantities, and together with the stable isotopes they are called ...
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds. [1]
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is considered radioactive. Three of the most common types of decay are alpha, beta, and gamma decay.
The 80 elements with one or more stable isotopes comprise a total of 251 nuclides that have not been shown to decay using current equipment. Of these 80 elements, 26 have only one stable isotope and are called monoisotopic. The other 56 have more than one stable isotope. Tin has ten stable isotopes, the largest number of any element.
Some older sources give the final isotope as bismuth-209, but in 2003 it was discovered that it is very slightly radioactive, with a half-life of 2.01 × 10 19 years. [9] There are also non-transuranic decay chains of unstable isotopes of light elements, for example those of magnesium-28 and chlorine-39.
A nuclide is a species of an atom with a specific number of protons and neutrons in the nucleus, for example, carbon-13 with 6 protons and 7 neutrons. The nuclide concept (referring to individual nuclear species) emphasizes nuclear properties over chemical properties, whereas the isotope concept (grouping all atoms of each element) emphasizes chemical over nuclear.
Oxygen-14 is the second most stable radioisotope. Oxygen-14 ion beams are of interest to researchers of proton-rich nuclei; for example, one early experiment at the Facility for Rare Isotope Beams in East Lansing, Michigan, used a 14 O beam to study the beta decay transition of this isotope to 14 N. [18] [19]
An isotope is an atom of an element with an abnormal number of neutrons, changing their atomic mass. [2] Isotopes can be subdivided into stable and unstable or radioactive. Unstable isotopes decay at a predictable rate over time. [2] The first stable isotope was discovered in 1913, and most were identified by the 1930s. [2]