enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]

  3. Archimedean group - Wikipedia

    en.wikipedia.org/wiki/Archimedean_group

    An additive group consists of a set of elements, an associative addition operation that combines pairs of elements and returns a single element, an identity element (or zero element) whose sum with any other element is the other element, and an additive inverse operation such that the sum of any element and its inverse is zero. [2]

  4. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    For example, addition is a total associative operation on nonnegative integers, which has 0 as additive identity, and 0 is the only element that has an additive inverse. This lack of inverses is the main motivation for extending the natural numbers into the integers.

  5. Field (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Field_(mathematics)

    This includes the existence of an additive inverse −a for all elements a and of a multiplicative inverse b −1 for every nonzero element b. This allows the definition of the so-called inverse operations, subtraction a − b and division a / b, as a − b = a + (−b) and a / b = a ⋅ b −1. Often the product a ⋅ b is represented by ...

  6. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    In the example of symmetries of a square, the identity and the rotations constitute a subgroup ⁠ = {,,,} ⁠, highlighted in red in the Cayley table of the example: any two rotations composed are still a rotation, and a rotation can be undone by (i.e., is inverse to) the complementary rotations 270° for 90°, 180° for 180°, and 90° for 270°.

  7. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    The axioms of modules imply that (−1)x = −x, where the first minus denotes the additive inverse in the ring and the second minus the additive inverse in the module. Using this and denoting repeated addition by a multiplication by a positive integer allows identifying abelian groups with modules over the ring of integers.

  8. Unit (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Unit_(ring_theory)

    The multiplicative identity 1 and its additive inverse −1 are always units. More generally, any root of unity in a ring R is a unit: if r n = 1, then r n−1 is a multiplicative inverse of r. In a nonzero ring, the element 0 is not a unit, so R × is not closed under addition.

  9. Additive identity - Wikipedia

    en.wikipedia.org/wiki/Additive_identity

    In mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element x in the set, yields x.One of the most familiar additive identities is the number 0 from elementary mathematics, but additive identities occur in other mathematical structures where addition is defined, such as in groups and rings.