Search results
Results from the WOW.Com Content Network
In the anisotropic case where the coefficient matrix A is not scalar and/or if it depends on x, then an explicit formula for the solution of the heat equation can seldom be written down, though it is usually possible to consider the associated abstract Cauchy problem and show that it is a well-posed problem and/or to show some qualitative ...
This article describes how to use a computer to calculate an approximate numerical solution of the discretized equation, in a time-dependent situation. In order to be concrete, this article focuses on heat flow, an important example where the convection–diffusion equation applies. However, the same mathematical analysis works equally well to ...
Heat is the flow of thermal energy driven by thermal non-equilibrium, so the term 'heat flow' is a redundancy (i.e. a pleonasm). Heat must not be confused with stored thermal energy, and moving a hot object from one place to another must not be called heat transfer. However, it is common to say ‘heat flow’ to mean ‘heat content’. [1]
In thermochemistry, a thermochemical equation is a balanced chemical equation that represents the energy changes from a system to its surroundings.One such equation involves the enthalpy change, which is denoted with In variable form, a thermochemical equation would appear similar to the following:
The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.
Carnot was aware that heat could be produced by friction and by percussion, as forms of dissipation of "motive power". [8] As late as 1847, Lord Kelvin believed in the caloric theory of heat, being unaware of Carnot's notes. In 1840, Germain Hess stated a conservation law for the heat of reaction during chemical transformations. [9]
For a fluid flowing in a straight circular pipe with a Reynolds number between 10,000 and 120,000 (in the turbulent pipe flow range), when the fluid's Prandtl number is between 0.7 and 120, for a location far from the pipe entrance (more than 10 pipe diameters; more than 50 diameters according to many authors [10]) or other flow disturbances ...
In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectrum of the Laplace operator , and is thus of some auxiliary importance throughout mathematical physics .