Search results
Results from the WOW.Com Content Network
1. Means "less than or equal to". That is, whatever A and B are, A ≤ B is equivalent to A < B or A = B. 2. Between two groups, may mean that the first one is a subgroup of the second one. ≥ 1. Means "greater than or equal to". That is, whatever A and B are, A ≥ B is equivalent to A > B or A = B. 2.
The notation a ≥ b or a ⩾ b or a ≧ b means that a is greater than or equal to b (or, equivalently, at least b, or not less than b). In the 17th and 18th centuries, personal notations or typewriting signs were used to signal inequalities. [ 2 ]
In mathematics a linear inequality is an inequality which involves a linear function. A linear inequality contains one of the symbols of inequality: [1] < less than > greater than; ≤ less than or equal to; ≥ greater than or equal to; ≠ not equal to
Greater than; Greater than or equal to; Less than; Less than or equal to; Divides (evenly) Subset of; Equivalence relations: Equality; Parallel with (for affine spaces) Is in bijection with; Isomorphic; Tolerance relation, a reflexive and symmetric relation: Dependency relation, a finite tolerance relation; Independency relation, the complement ...
The less-than sign is a mathematical symbol that denotes an inequality between two values. The widely adopted form of two equal-length strokes connecting in an acute angle at the left, <, has been found in documents dated as far back as the 1560s.
In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x , denoted ⌈ x ⌉ or ceil( x ) .
Given a function f with domain D and a preordered set (K, ≤) as codomain, an element y of K is an upper bound of f if y ≥ f (x) for each x in D. The upper bound is called sharp if equality holds for at least one value of x. It indicates that the constraint is optimal, and thus cannot be further reduced without invalidating the inequality.
One property of the gamma function, distinguishing it from other continuous interpolations of the factorials, is given by the Bohr–Mollerup theorem, which states that the gamma function (offset by one) is the only log-convex function on the positive real numbers that interpolates the factorials and obeys the same functional equation.