Search results
Results from the WOW.Com Content Network
Trees are commonly used to represent or manipulate hierarchical data in applications such as: . File systems for: . Directory structure used to organize subdirectories and files (symbolic links create non-tree graphs, as do multiple hard links to the same file or directory)
A link/cut tree is a data structure for representing a forest, a set of rooted trees, and offers the following operations: Add a tree consisting of a single node to the forest. Given a node in one of the trees, disconnect it (and its subtree) from the tree of which it is part. Attach a node to another node as its child.
A recursive tree is a labeled rooted tree where the vertex labels respect the tree order (i.e., if u < v for two vertices u and v, then the label of u is smaller than the label of v). In a rooted tree, the parent of a vertex v is the vertex connected to v on the path to the root; every vertex has a unique parent, except the root has no parent. [24]
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.
A cutpoint, cut vertex, or articulation point of a graph G is a vertex that is shared by two or more blocks. The structure of the blocks and cutpoints of a connected graph can be described by a tree called the block-cut tree or BC-tree. This tree has a vertex for each block and for each articulation point of the given graph.
Thus, given a graph G = (V, E), a tree decomposition is a pair (X, T), where X = {X 1, …, X n} is a family of subsets (sometimes called bags) of V, and T is a tree whose nodes are the subsets X i, satisfying the following properties: [3] The union of all sets X i equals V. That is, each graph vertex is associated with at least one tree node.
A cut or split is trivial when one of its two sides has only one vertex in it; every trivial cut is a split. A graph is said to be prime (with respect to splits) if it has no nontrivial splits. [2] Two splits are said to cross if each side of one split has a non-empty intersection with each side of the other split.
On the left a centered tree, on the right a bicentered one. The numbers show each node's eccentricity. To give another class of examples, every free tree T has a separator S consisting of a single vertex, the removal of which partitions T into two or more connected components, each of size at most n ⁄ 2.