Search results
Results from the WOW.Com Content Network
In some languages, assigning a value to an element of an array automatically extends the array, if necessary, to include that element. In other array types, a slice can be replaced by an array of different size, with subsequent elements being renumbered accordingly – as in Python's list assignment A[5:5] = [10,20,30], that inserts three new ...
Length-prefixed "short" Strings (up to 64 bytes), marker-terminated "long" Strings and (optional) back-references Arbitrary-length heterogenous arrays with end-marker Arbitrary-length key/value pairs with end-marker
In array languages, operations are generalized to apply to both scalars and arrays. Thus, a+b expresses the sum of two scalars if a and b are scalars, or the sum of two arrays if they are arrays. An array language simplifies programming but possibly at a cost known as the abstraction penalty.
The following list contains syntax examples of how a range of element of an array can be accessed. In the following table: first – the index of the first element in the slice; last – the index of the last element in the slice; end – one more than the index of last element in the slice; len – the length of the slice (= end - first)
traverses an array of integers using the for keyword. In the case of internal iteration where the user can supply an operation to the iterator to perform over every element of a collection, many built-in operators and MATLAB functions are overloaded to execute over every element of an array and return a corresponding output array implicitly.
For "one-dimensional" (single-indexed) arrays – vectors, sequence, strings etc. – the most common slicing operation is extraction of zero or more consecutive elements. Thus, if we have a vector containing elements (2, 5, 7, 3, 8, 6, 4, 1), and we want to create an array slice from the 3rd to the 6th items, we get (7, 3, 8, 6).
Note how the use of A[i][j] with multi-step indexing as in C, as opposed to a neutral notation like A(i,j) as in Fortran, almost inevitably implies row-major order for syntactic reasons, so to speak, because it can be rewritten as (A[i])[j], and the A[i] row part can even be assigned to an intermediate variable that is then indexed in a separate expression.
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal. For such matrices, the half-vectorization is sometimes more useful than the ...