Search results
Results from the WOW.Com Content Network
The pressure at which sound becomes painful for a listener is the pain threshold pressure for that person at that time. The threshold pressure for sound varies with frequency and can be age-dependent. People who have been exposed to more noise/music usually have a higher threshold pressure. [3] Threshold shift can also cause threshold pressure ...
While 1 atm (194 dB peak or 191 dB SPL) [11] [12] is the largest pressure variation an undistorted sound wave can have in Earth's atmosphere (i. e., if the thermodynamic properties of the air are disregarded; in reality, the sound waves become progressively non-linear starting over 150 dB), larger sound waves can be present in other atmospheres ...
~140 dB: Threshold of pain pressure level for sound where prolonged exposure may lead to hearing loss [citation needed] ±300 Pa ±0.043 psi Lung air pressure difference moving the normal breaths of a person (only 0.3% of standard atmospheric pressure) [35] [36] 400–900 Pa 0.06–0.13 psi
Such a difference can exceed 100 dB which represents a factor of 100,000 in amplitude and a factor 10,000,000,000 in power. [4] [5] The dynamic range of human hearing is roughly 140 dB, [6] [7] varying with frequency, [8] from the threshold of hearing (around −9 dB SPL [8] [9] [10] at 3 kHz) to the threshold of pain (from 120 to 140 dB SPL ...
The absolute threshold of hearing (ATH), also known as the absolute hearing threshold or auditory threshold, is the minimum sound level of a pure tone that an average human ear with normal hearing can hear with no other sound present. The absolute threshold relates to the sound that can just be heard by the organism.
The range of severity can vary from pain to hearing loss. [2] Acute acoustic trauma can be treated by combining hyperbaric oxygen therapy (HBO) with corticosteroids. Acute noise exposure causes inflammation and lower oxygen supply in the inner ear. Corticosteroids hinder the inflammatory reaction and HBO provides an adequate oxygen supply.
The ear can be exposed to short periods of sound in excess of 120 dB without permanent harm — albeit with discomfort and possibly pain — but long term exposure to sound levels over 85 dB(A) can cause permanent hearing loss. [31] There are two basic types of NIHL: NIHL caused by acoustic trauma; NIHL that gradually develops.
The lowest equal-loudness contour represents the quietest audible tone—the absolute threshold of hearing. The highest contour is the threshold of pain . Churcher and King carried out a second determination in 1937, but their results and Fletcher and Munson's showed considerable discrepancies over parts of the auditory diagram.