Search results
Results from the WOW.Com Content Network
Secondary hyperaldosteronism (also hyperreninism, or hyperreninemic hyperaldosteronism) is due to overactivity of the renin–angiotensin–aldosterone system (RAAS).. The causes of secondary hyperaldosteronism are accessory renal veins, fibromuscular dysplasia, reninoma, renal tubular acidosis, nutcracker syndrome, ectopic tumors, massive ascites, left ventricular failure, and cor pulmonale.
In summary, hyperaldosteronism causes hypernatremia, hypokalemia, and metabolic alkalosis. [13] Finer notes on aldosterone include the fact that it stimulates sodium-potassium ATPase in muscle cells, increasing intracellular potassium and also increases sodium reabsorption all along the intestine and nephron, possibly due to widespread ...
It selectively stimulates secretion of aldosterone. The secretion of aldosterone has a diurnal rhythm. Control of aldosterone release from the adrenal cortex: [citation needed] The role of the renin–angiotensin system: Angiotensin is involved in regulating aldosterone and is the core regulator. Angiotensin II acts synergistically with potassium.
Pseudohyperaldosteronism (also pseudoaldosteronism) is a medical condition which mimics the effects of elevated aldosterone (hyperaldosteronism) by presenting with high blood pressure, low blood potassium levels (hypokalemia), metabolic alkalosis, and low levels of plasma renin activity (PRA).
Liddle's syndrome, also called Liddle syndrome, [1] is a genetic disorder inherited in an autosomal dominant manner that is characterized by early, and frequently severe, high blood pressure associated with low plasma renin activity, metabolic alkalosis, low blood potassium, and normal to low levels of aldosterone. [1]
Hypoaldosteronism causes low sodium (hyponatremia), high potassium (hyperkalemia), and metabolic acidosis, a condition in which the body produces excess acid. These conditions are responsible for the symptoms of hypoaldosteronism, which include muscle weakness, nausea, palpitations, irregular heartbeat, and abnormal blood pressure. [2]
On one hand, mutations on the gene NR3C2 (coding the mineralocorticoid receptor) cause the synthesis of a non-functional receptor which is unable to bind aldosterone or function correctly. In the kidney, aldosterone plays an important role of regulating sodium and potassium homeostasis by its actions on distal nephron cells.
Other symptoms caused by CNH are electrolyte dysequilibrium and mood changes that primarily include anxiety due to the hyperventilation. [1] [4] Once CNH is diagnosed, the condition generally progresses until the patient becomes unconscious or lapses into a coma. Most patients are seen to enter this state two to three months after the onset of CNH.