Search results
Results from the WOW.Com Content Network
The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century.
Antonie van Leeuwenhoek (1632–1723). The field of microscopy (optical microscopy) dates back to at least the 17th-century.Earlier microscopes, single lens magnifying glasses with limited magnification, date at least as far back as the wide spread use of lenses in eyeglasses in the 13th century [2] but more advanced compound microscopes first appeared in Europe around 1620 [3] [4] The ...
Two Leica oil immersion microscope objective lenses; left 100×, right 40×. The objective lens of a microscope is the one at the bottom near the sample. At its simplest, it is a very high-powered magnifying glass, with very short focal length. This is brought very close to the specimen being examined so that the light from the specimen comes ...
Fluorescence and confocal microscopes operating principle. Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. [1]
[1] [2] A fluorescence microscope is any microscope that uses fluorescence to generate an image, whether it is a simple set up like an epifluorescence microscope or a more complicated design such as a confocal microscope, which uses optical sectioning to get better resolution of the fluorescence image. [3]
The interference objective is the most important part of such a microscope. Different types of objectives are available. With a Mirau objective, as shown in Figure 3, the reference beam is reflected back in the direction of the objective front lens by a beam splitter. On the front lens there is a miniaturized mirror the same size as the ...
The figure shows the optical path of a Mirau-interferometer. Reference beam (5-4-6) and object beam (5-7-6) have identical optical path length and can thus cause white light interference. Parts of the Mirau interferometer: 1. Lens of the microscope, 2. Semitransparent mirror, 3. Object surface, 4. Reference mirror with reference beam, 5.
The fluorescence light emitted from the lightsheet is then collected perpendicularly with a standard microscope objective and projected onto an imaging sensor (usually a CCD, electron-multiplying CCD or CMOS camera). In order to let enough space for the excitation optics/lightsheet an observation objective with high working distance is used.