Search results
Results from the WOW.Com Content Network
The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A l (half linear dimensions yields quarter area), and the area of the parallelogram is A ...
A parallelogon is constructed by two or three pairs of parallel line segments. The vertices and edges on the interior of the hexagon are suppressed. There are five Bravais lattices in two dimensions, related to the parallelogon tessellations by their five symmetry variations.
Parallel lines are mapped on parallel lines, or on a pair of points (if they are parallel to ). The ratio of the length of two line segments on a line stays unchanged. As a special case, midpoints are mapped on midpoints. The length of a line segment parallel to the projection plane remains unchanged. The length of any line segment is shortened ...
A lower pair is an ideal joint that constrains contact between a surface in the moving body to a corresponding in the fixed body. A lower pair is one in which there occurs a surface or area contact between two members, e.g. nut and screw, universal joint used to connect two propeller shafts.
The other two sides are called the legs (or the lateral sides) if they are not parallel; otherwise, the trapezoid is a parallelogram, and there are two pairs of bases. A scalene trapezoid is a trapezoid with no sides of equal measure, [ 4 ] in contrast with the special cases below.
Line a is a great circle, the equivalent of a straight line in spherical geometry. Line c is equidistant to line a but is not a great circle. It is a parallel of latitude. Line b is another geodesic which intersects a in two antipodal points. They share two common perpendiculars (one shown in blue).
By analogy, it relates to a parallelogram just as a cube relates to a square. [a] Three equivalent definitions of parallelepiped are a hexahedron with three pairs of parallel faces, a polyhedron with six faces , each of which is a parallelogram, and; a prism of which the base is a parallelogram.
For example, a set of points on a line in n-space transforms to a set of polylines in parallel coordinates all intersecting at n − 1 points. For n = 2 this yields a point-line duality pointing out why the mathematical foundations of parallel coordinates are developed in the projective rather than euclidean space. A pair of lines intersects at ...