Search results
Results from the WOW.Com Content Network
Mathematical induction is a method for proving that a statement () ... Another variant, called complete induction, course of values induction or strong induction ...
The induction, bounding and least number principles are commonly used in reverse mathematics and second-order arithmetic. For example, I Σ 1 {\displaystyle {\mathsf {I}}\Sigma _{1}} is part of the definition of the subsystem R C A 0 {\displaystyle {\mathsf {RCA}}_{0}} of second-order arithmetic.
Structural induction is a proof method that is used in mathematical logic (e.g., in the proof of Łoś' theorem), computer science, graph theory, and some other mathematical fields. It is a generalization of mathematical induction over natural numbers and can be further generalized to arbitrary Noetherian induction .
The ninth, final, axiom is a second-order statement of the principle of mathematical induction over the natural numbers, which makes this formulation close to second-order arithmetic. A weaker first-order system is obtained by explicitly adding the addition and multiplication operation symbols and replacing the second-order induction axiom with ...
All horses are the same color is a falsidical paradox that arises from a flawed use of mathematical induction to prove the statement All horses are the same color. [1] There is no actual contradiction, as these arguments have a crucial flaw that makes them incorrect.
Transfinite induction requires proving a base case (used for 0), a successor case (used for those ordinals which have a predecessor), and a limit case (used for ordinals which don't have a predecessor). Transfinite induction is an extension of mathematical induction to well-ordered sets, for example to sets of ordinal numbers or cardinal numbers.
The proof of this is derived from a game between the induction and the environment. Essentially, any computable induction can be tricked by a computable environment, by choosing the computable environment that negates the computable induction's prediction. This fact can be regarded as an instance of the no free lunch theorem.
Backward induction in game theory and economics; Induced representation, in representation theory; Mathematical induction, a method of proof Strong induction; Structural induction; Transfinite induction. Epsilon-induction; Parabolic induction